
A Practical Ontology Framework for Static Model

Analysis

Ben Lickly
Charles Shelton
Elizabeth Latronico
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-33

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-33.html

April 26, 2011



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
26 APR 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
A Practical Ontology Framework for Static Model Analysis 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California, Berkeley,Department of Electrical Engineering
and Computer Science,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
In embedded software, there are many reasons to include concepts from the problem domain during
design. Not only does doing so make the software more comprehensible to those with domain
understanding, it also becomes possible to check that the software conforms to correctnesses criteria
expressed in the domain of interest. Here we present a uni ed framework that enables users to create
ontologies representing arbitrary domains of interest as well as analyses over those domains. These
analyses may then be run against software speci cations, encapsulated as models checking that they are
sound with respect to the given ontology. Our approach is general, in that our framework is agnostic to the
semantic meaning of the ontologies that it uses and does not privilege the example ontologies that we
present here. Where practical use-cases and principled theory exist, we provide for the expression of
certain patterns of in nite ontologies and ontology compositions. In this paper we present two overarching
patterns of in nite ontologies those containing values, and those containing ontologies recursively. We show
how these two patterns map on to use cases of unit systems and structured data types, and show how these
can be used over cyber-physical systems examples drawn from automotive and avionic domains. Despite
the range of ontologies and analyses that we present here, we see user-built ontologies as a key feature of
our approach. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Copyright © 2011, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Founda- tion, the U.S. Army Research Office, the
U.S. Air Force Office of Scientific Research, the Air Force Research Lab
(AFRL), the Multiscale Systems Center (MuSyC), one of six research
centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program, and the following
companies: Bosch, National Instruments, Thales, and Toyota.



A Practical Ontology Framework for Static Model Analysis ∗

Ben Lickly
University of California,

Berkeley
Berkeley, CA, USA

blickly@eecs.berkeley.edu

Charles Shelton
Bosch Research

Pittsburgh, PA, USA
Charles.Shelton
@us.bosch.com

Elizabeth Latronico
Bosch Research

Pittsburgh, PA, USA
Elizabeth.Latronico

@us.bosch.com

Edward A. Lee
University of California,

Berkeley
Berkeley, CA, USA

eal@eecs.berkeley.edu

ABSTRACT
In embedded software, there are many reasons to include
concepts from the problem domain during design. Not only
does doing so make the software more comprehensible to
those with domain understanding, it also becomes possible
to check that the software conforms to correctnesses crite-
ria expressed in the domain of interest. Here we present
a unified framework that enables users to create ontolo-
gies representing arbitrary domains of interest as well as
analyses over those domains. These analyses may then be
run against software specifications, encapsulated as models,
checking that they are sound with respect to the given on-
tology. Our approach is general, in that our framework is
agnostic to the semantic meaning of the ontologies that it
uses and does not privilege the example ontologies that we
present here. Where practical use-cases and principled the-
ory exist, we provide for the expression of certain patterns of
infinite ontologies and ontology compositions. In this paper
we present two overarching patterns of infinite ontologies:
those containing values, and those containing ontologies re-
cursively. We show how these two patterns map on to use
cases of unit systems and structured data types, and show
how these can be used over cyber-physical systems examples
drawn from automotive and avionic domains. Despite the
range of ontologies and analyses that we present here, we
see user-built ontologies as a key feature of our approach.

∗This work was supported in part by the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berkeley,
which receives support from the National Science Founda-
tion, the U.S. Army Research Office, the U.S. Air Force
Office of Scientific Research, the Air Force Research Lab
(AFRL), the Multiscale Systems Center (MuSyC), one of
six research centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation program,
and the following companies: Bosch, National Instruments,
Thales, and Toyota.

1. INTRODUCTION
In building embedded software for cyber-physical systems,
there are a host of potential problems as a result of inter-
facing components together. One of the leading causes of
failure is mismatched assumptions between software com-
ponents [16]. This occurs when the semantics of what one
component expects to receive does not match the semantics
of what another component produces. One way to check
some of these errors is with a type system, which can check
that the types of components are consistent with one an-
other. This prevents such egregious examples as having one
component produce output as a floating point number and
the next component expect an integer, but it ignores an en-
tire class of finer distinctions between signals whose type
is the same but only differ with respect to some semantic
property known to the model builder.

One type of semantic error that is particularly prevalent is
that of mismatched units, which has been found to be a
root cause of several high-profile disasters. Among these are
the Air Canada Flight 143, which due to a miscalculation of
fuel density confusing pounds and kilograms took off with
less than half the fuel required [7], and the Mars Climate
Orbiter, which crashed into the planet on descent due to a
unit error between newtons and pound-force [11].

While traditional software projects often can encode domain
information into their object-oriented type hierarchy, model-
based engineering rarely is able to use such a large amount
of domain information in the construction of their designs.
And this is with good reason, because embedded systems
are often constrained in terms of resources and unwilling
to accept the run-time overhead that traditional object ori-
ented systems, with dynamic dispatch and other practices
imply. Rather, we find using an orthogonal analysis on top
of existing models to be a preferable solution. This allows
modelers to keep the structure and efficiency of existing de-
signs, while allowing them to also leverage the advantages
that come with including domain information into the soft-
ware itself.

2. OUR APPROACH
We leverage the approach of Leung et al. [8] in which a model
builder can explicitly specify the properties in which they are



Figure 1: An infinite flat lattice for doing constant
propagation.

interested by creating a lattice-based ontology. This ontol-
ogy, along with a few manual annotations within a model-
based specification can then be used in an efficient algo-
rithm from Rehof and Mogenson [13], similar to Hindley-
Milner type theory, in order to infer properties throughout
the model.

We implement our analysis framework on top of Ptolemy II [3],
an extensible open source model-based design tool written
in Java. While Ptolemy II makes a good testbed for im-
plementing and experimenting with new analyses, we also
feel that the techniques we present here are broadly use-
ful. For this reason, we aim to make our analysis frame-
work orthogonal to the execution semantics of Ptolemy II,
allowing it to be applied more easily to a broad selection of
model-based design tools, such as TDL [12], ForSyDe [14],
SPEX [9], ModHel’X [4], and Metropolis [1], as well as com-
mercial tools like LabView and Simulink.

We see the dimension ontology given as an example in [8]
to be a step in the right direction for solving unit issues,
but ultimately insufficient. By only distinguishing between
separate dimensions but not between different units of the
same dimension, this dimension ontology is unable to dis-
cover the unit errors that lead to the problems presented
in Section 1. Unfortunately, this limitation is not simply a
case of ontology simplification, but an inherent shortcoming
of expressing ontologies as a finite set of discrete concepts.
This is because an ontology that expresses units rather than
just dimensions fundamentally must represent somehow the
scale and offset of separate units within a dimension, which
cannot be contained in a simple finite lattice structure. Ad-
ditionally, there are structured data types which provide use-
ful abstractions for programmers, but whose properties do
not fall neatly into the finite lattice restrictions given in [8]

In this work, we present generalizations of these two use-
cases into a class of infinite ontology patterns that we have
found useful and broadly applicable to semantic property
analyses. We first present an overview of the general pat-
terns, and then show their implementation as they apply to
the unit system ontology presented here.

3. INFINITE ONTOLOGY PATTERNS

Figure 2: Using a FlatTokenInfiniteConcept to rep-
resent an infinite flat lattice.

There are two main patterns that we utilize for allowing
users to create potentially infinite lattices. The first type
expresses an infinite number of incomparable elements that
can be inserted into the lattice. This can be used to rep-
resent things like flat lattices with an infinite number of
incompatible elements.

The other pattern expresses lattices that are self-referential,
in which a lattice may recursively contain itself. A simple
example of this is the array type of a type system. Since an
array may contain elements of any type, including another
array, the structure of the array sub-lattice is the same as the
overall type lattice, recursively defining an infinite lattice.

3.1 Infinite Flat Lattice Pattern
The pattern that we utilize for creating an infinite flat lattice
representative is simple. The user can select a special type
of concept, called a FlatTokenInfiniteConcept , and use it
in her model in the same way she would use normal finite
concepts, as seen in Figure 2. The only difference is that here
the concept represents a potentially infinite set of concepts of
the user’s choosing. This pattern allows for a very intuitive
approach to representing not only flat lattices, but also more
complicated lattices that also contain infinite incomparable
subparts.

One nice property of the infinite flat lattice pattern is that it
does not increase the height of the lattice. The fixed point
algorithm we use from Rehof and Mogenson [13] runs in
time proportional to the height of the lattice, without regard
to the overall size. This means that infinite flat lattices
do not sacrifice inference efficiency in order to achieve their
increased expressiveness.

3.1.1 Constant Propagation Analysis
A simple example of an analysis that makes use of this type
of lattice is constant propagation. Constant propagation is a
static analysis often used in compilers that computes which
variables in a program are constant, as well as their values.
Usually, a lattice is used that has a separate concept for
each constant element type, as well as an additional concept
to represent a non-constant type. This produces the infi-
nite flat lattice structure shown in Figure 1, represented in
our software with a FlatTokenInfiniteConcept as shown
in Figure 2. The way that such a lattice is normally used
is as follows: given a simple deterministic operation on two
constant values, the constraint can simply perform the op-
eration on the abstract values. Given an operation over a



Component Constraint

Addition ⊕(x, y) =



Unused if x = Unused

or y = Unused

x + y else if x < Nonconst

and y < Nonconst

Nonconst otherwise.

Subtraction 	(x, y) =



Unused if x = Unused

or y = Unused

x− y else if x < Nonconst

and y < Nonconst

Nonconst otherwise.

Multiplication ⊗(x, y) =



Unused if x = Unused

or y = Unused

x× y else if x < Nonconst

and y < Nonconst

Nonconst otherwise.

Division �(x, y) =



Unused if x = Unused

or y = Unused

or y = Constant 0

x/y else if x < Nonconst

and y < Nonconst

Nonconst otherwise.

Table 1: Constraints for the constant propagation
example

non-constant value, however, we simply conclude that the
resulting value is non-constant. There may be cases where
non-constant inputs still have constant outputs, but this ap-
proximation is simple and sound, in that we will never con-
clude that a non-constant value is constant.

The constraints for the basic binary operations of addition,
subtraction, multiplication, and division are given in Ta-
ble 1, and mirror closely our operational notion of what
these operations do (Note the special case for the division
operation, since division by zero should be disallowed).

A simplified example of such an analysis is shown in Fig-
ure 3. This simple model has two types of source actors at
the left: the Const actors each produce a single unchanging
output throughout the execution, whereas the Ramp actor
produces a time varying sequence. The Ramp actor in this
simple model can represent any other non-constant sources
that we may have to deal with such as sensors, network
packets, or user input. Even in the presence of non-constant
sources, however, the lower section of the model deals only
with constant values, and the analysis computes, for exam-
ple, that the output of the MultiplyDivide2 actor will always
be the constant value 5600.

Using such an analysis allows model builders to see not only
which signals in their models are constant, but also what
the values of such constant signals are, which is often just as
important. If the model builders were so inclined, they could
use this information to simplify the model into a smaller
optimized version with the same behavior but no run-time
computation of constant values.

3.2 Infinite Recursive Type Patterns
The other infinite lattice pattern that we have observed to
be useful is that of a self-referential recursive structure. The
classic example is an array type, where the array type is
not a final type in and of itself, but is parametrized with
respect to the type of the elements of the array. In this way,
a recursively defined hierarchy of array types can be built up
starting with arrays of primitive types and then of arrays of
arrays of primitives, and so on. In fact, all structured data
types that can include data types inside of them share this
property, including lists, records, sets, and more.

In these cases, the lattice that represents all of the possible
types becomes not only infinite, but also infinite in height.
This means that these cases lose some of the safety that we
had with finite-height lattices, but there are benefits from
these structured types as well. They allow us to represent a
variety of useful patterns that are more varied than one may
think at first. In addition, there are heuristics that allow us
to deal with many cases decidably. In Section 5 we discuss
specifically the design of infinite recursive lattices for sup-
porting records of concepts, and these issues are discussed
in more depth there.

4. UNIT SYSTEMS
One of the drawbacks of the original dimension analysis pre-
sented in [8] was that it could not check for inconsisten-
cies arising from different units of the same dimension, such
as having one component expect an input in feet coming
from a component producing an output in meters. While it
may technically be possible to add concepts and rules cor-
responding to each of the individual units in use in a par-
ticular model, the resulting ontology would be brittle and
the resulting rules cumbersome. Using the infinite flat lat-
tice pattern allows us to layer the information about units
on top of a dimension lattice without complicating the basic
structure. The way we do this is by replacing each indi-
vidual dimension with a FlatTokenInfiniteConcept that
represents the scaling factor and offset of each unit in that
dimension with respect to a representative unit. Our unit
ontology also contains a Dimensionless concept that is a
special finite concept that represents model signals with no
physical dimension and thus no units.

There is no limitation on what types of units can be repre-
sented in an infinite ontology. Figure 5 shows a lattice that
contains dimensions that cover several base SI units for di-

Figure 3: A model on which constant propagation
analysis has been applied.



Figure 5: A generic lattice for unit analysis.

Figure 4: An infinite recursive lattice can include
references to itself.

mensions such as Mass, Time, Position, and Temperature,
plus a few combined units from the Velocity, Acceleration,
Volume, and Force dimensions that are derived from the
base units. Note that some of the units here have non-zero
offsets, such as Celsius and Fahrenheit temperatures. De-
spite the difficulties with multiplying and dividing by units
with non-zero offsets, there is no problem with expressing
them, converting between them, and checking their consis-
tent use.

Before we actually delve into the different units within a
dimension, first let us note the approach that we take to
distinguishing different dimensions. Like the dimension lat-
tice and unlike most traditional unit systems [6] we explicitly
enumerate all of the dimensions that we will be interested
in. This means that any single unit ontology cannot hope to
be comprehensive, but it also means that we are able to sep-
arately represent semantic dimensions that are composed of
the same elementary units. This means that we could have
an ontology that makes a distinction between distance and
altitude, or work and torque, even though the underlying
units are the same in both cases.

One of the features of our unit system infrastructure is that
users may create arbitrary unit systems that do not neces-
sarily correspond to SI units or any other existing fixed unit

Figure 6: Attributes of the T ime base dimension.

system. We allow this through the creation of two categories
of dimensions to which units may belong: base dimensions,
which cannot be broken down into smaller pieces, and de-
rived dimensions, which can be expressed as products or
quotients of other dimensions.

Base dimensions are the building blocks of our unit systems.
As shown in Figure 6, within a given base dimension, all the
units are expressed in terms of their scaling factors and off-
sets with respect to a specific unit, called the representative
unit. For simplicity, we allow offsets to be omitted when
they are zero. For example, if we chose to use cm as our
representative unit of position, then we could express the
unit of a meter as 100 × cm and of an inch as 2.54 × cm.
This means that each individual unit is specified as a com-
bination of the dimension to which it belongs as well as the
scaling factor and offset from the representative unit of its
dimension. As a form of shorthand, we allow the user to
specify names for specific scaling factors, such as cm, m, or
inch. These names must be qualified by the dimension to
which they belong, leading to fully qualified unit names like
Position cm or T ime s.

Derived dimensions are specified as a set of base dimensions
and their corresponding exponents, as shown in Figure 7.
Here, Acceleration is expressed as a derived dimension based
on Position and Time, where the exponent of Position is 1
and the exponent of Time is −2. The units of derived di-
mensions are expressed in terms of units of base dimensions.

In this way, we can define as many units as we please within
a dimension. It is important to note that the unit factors
and offsets are only used for distinguishing units within a
dimension, and not for canonicalizing all unit calculations.
For example, a model with all units in English units will



Figure 7: Attributes of the Acceleration derived dimension.

not need to convert any of its calculations to use metric
units just because the representative units of the ontology
are in metric. The analysis remains orthogonal to the actual
execution semantics of the model.

Note that in order for this to work, we make the restriction
that all of the units of derived dimensions are expressed in
terms of base dimension units with zero offsets. This means
that if kelvins are the only unit of temperature with a zero
offset, then any derived dimension based on temperature
will only be able to use temperatures expressed in kelvins
in its computation. This intuitively makes sense, since the
result of multiplying or dividing units with non-zero offsets
depends on the values of those offsets.

In cases where there are unit mismatches, users can add
units converters to their models. These actors leverage the
information held in the units ontology in order to calculate
the conversion from one unit to another. For this purpose,
we have added a new actor for performing unit conversion.
It takes two units from the same dimension as parameters,
and uses the information in the units ontology to calculate
the necessary scaling and offset to convert from the input
unit to the output.

Note that other work with similar aims of adding unit in-
formation and static checking to programming systems in-
cludes packages for Ada [5], SCADE [15], and SystemC [10].
We value the utility in these efforts, but see our approach
as fundamentally different. While other tools add explicit
notions of units, our approach only adds enough infrastruc-
ture for end users to define their own units. This means that
our tool allows model builders to create unit systems that
are domain specific, or make semantic distinctions between
units that must be the same in a general unit system.

4.1 Example Model: Adaptive Cruise Control
Here we present an example of a model used in a cyber-
physical system, and then examine what types of analy-
ses we may run on this model and how they can aid us
in finding errors and better understanding our model. We
use an example model that allows simulation of a system
of two vehicles connected by a network of unknown relia-
bility, where the following vehicle must use the information
received on the network in order to determine a safe speed
for itself. While this model clearly contains simplifications
of real-world dynamics, we find it complicated enough to
highlight real errors that occur in cyber-physical systems
and the benefits of our approach.

Our example model, an adaptation of the example from [8],

Figure 8: A lattice for unit analysis of the two-car
system.

is shown in Figure 9(a) at the topmost level of hierarchy.
It models a simple two-car system in which the leading car
is driven by a human operator and sends its acceleration,
speed, and velocity over a wireless link to the following car.
The following car then uses the information received over
the wireless link in order to determine its own speed, in
a system of collaborative cruise control. Since the wireless
link is assumed to be unreliable, the following car does sanity
checks on the data it receives and falls back to a conservative
control algorithm in case the data coming in on the link is
deemed unreliable.

We take as a starting point the simple dimension analysis
presented by Leung et al. in [8], but we take issue with the
restrictions that they place on their ontologies that we see
as impractical. Since their dimension analysis allows only a
finite set of dimensions, it is not able to distinguish between
units of the same dimension. Unfortunately, this rules out
an entire class of error checking, as many common errors are
the result of incorrect units within the same dimension.

We present our infinite unit lattice for this adaptive cruise
control model in Figure 8. This has the same dimensions
as the lattice presented in [8], but instead of each dimen-
sion consisting of only a single representative concept, each
dimension is a FlatTokenInfiniteConcept which can rep-
resent the potentially unbounded different combinations of
scaling factors and offsets that different units of a dimension
could have.

In order to be able to infer the resulting units throughout a
model, it is important to specify constraints on how each ac-
tor transforms components. In our experience, many actors
in a model will simply produce the same type of units that
they accept, so it works best to give reasonable default con-
straints and then only specify the behavior of actors which
differ from this behavior. For defaults, we simply allow the



(a) A model of a two-car system with adaptive cruise control.

(b) Completed unit resolution.

Figure 9: Unit resolution of the adaptive cruise control example.

Component Constraint

Multiplication ⊗(x, y) =



Unknown if x = Unknown or y = Unknown

Position(xScale× yScale) if x = T ime(xScale) and y = V elocity(yScale)

or x = V elocity(xScale) and y = T ime(yScale)

V elocity(xScale× yScale) if x = T ime(xScale) and y = Acceleration(yScale)

or x = Acceleration(xScale) and y = T ime(yScale)

y if x = Dimensionless

x if y = Dimensionless

Conflict otherwise.

Division �(x, y) =



Unknown if x = Unknown or y = Unknown

Acceleration(xScale/yScale) if x = V elocity(xScale) and y = T ime(yScale)

V elocity(xScale/yScale) if x = Position(xScale) and y = T ime(yScale)

T ime(xScale/yScale) if x = Position(xScale) and y = V elocity(yScale)

or x = V elocity(xScale) and y = Acceleration(yScale)

x if y = Dimensionless

Conflict otherwise.

Table 2: Manual constraints for adaptive cruise control unit system example.



output of an actor to be the least upper bound of its in-
put constraints, as this allows actors with the same inputs
and outputs to be inferred correctly, while also catching and
reporting as conflicts cases where incompatible inputs are
provided. In our example, the most interesting components
that do not fall under the default least upper bound behavior
are the division and multiplication actors, whose constraints
are given in Table 2. In reality, multiplying or dividing by a
unit with a non-zero offset will result in a conflict, since the
semantics of such operations are not clearly defined. To sim-
plify the presentation of constraints, however, we ignore off-
sets and present only behavior when offsets are zero. Other
actors can then be derived from multiplication and division.
An integrator, for example, has the same effect on units as
a multiplication by a unit of time.

Note that while this facility for creating actor constraints is
powerful, it is also somewhat cumbersome. Once we define
the base and derived dimensions, we may desire that the be-
havior of a multiplication or division should be determined
automatically. In every case we will want multiplying two
units together to add the exponents of their component di-
mensions, and dividing two units to subtract the exponents
of their component dimensions.

We have implemented this behavior as the default constraint
for the built-in actors for multiplication and division, the
MultiplyDivide and Scale actors. Additionally, we have ap-
plied the same default behavior to the multiplication and
division operators in the Ptolemy expression language, al-
lowing us to infer these same properties across Ptolemy ex-
pression actors. This allows us to express the constraints
that work for all unit systems once, and then take advantage
of them with all subsequent unit systems. The constraints
for a general unit system look as follows.

Since we are ignoring offsets, we will represent units as D(s)
where D is the dimension and s is the scaling factor. The
generic inference constraint for multiplication operations is
given as follows:

⊗(x, y) =

Unknown if x = Unknown or y = Unknown

Dz(scalex × scaley) if x = Dx(scalex)

and y = Dy(scaley)

and Dz = multiplyDim(Dx, Dy)

y if x = Dimensionless

x if y = Dimensionless

Conflict otherwise.

Here multiplyDim is a partial function that finds the new
dimension that results from multiplying the two given di-
mensions. It can perform this calculation by simply adding
up the exponents of the arguments of the dimensions passed
to it.

The generic inference constraint for division operations is
similar:

�(x, y) =

Unknown if x = Unknown or y = Unknown

Dz(scalex/scaley) if x = Dx(scalex)

and y = Dy(scaley)

and Dz = divideDim(Dx, Dy)

Dz(1/scaley) if x = Dimensionless

and y = Dy(scaley)

and Dz = invertDim(Dy)

x if y = Dimensionless

Conflict otherwise.

Here divideDim performs the expected analog to multiplyDim
in the previous example. Namely it calculates the dimen-
sion, if one exists, that results from taking the quotient of
the given dimensions. In order to do this, it takes the dif-
ference of the exponents of the argument dimensions. The
partial function invertDim calculates the dimension with
opposite signs for each of the exponents of its argument di-
mensions.

Note that we allow defining derived dimensions in terms of
other derived dimensions, so both multiplyDim, divideDim,
and invertDim all must take this into account in order to
calculate the unique set of base dimensions and exponents
that make up their arguments.

4.2 Example Model: Fuel System
By no means are unit systems only useful for the standard
dimensions presented here. In [2], Derler et al. present an
example of a fuel system in a aircraft where multiple fuel
tanks must orchestrate the movement of fuel throughout the
craft while all communication occurs only over a bus with
timing delays. A model of the system is shown in Figure 10.
Due to the amount of communication happening between
the fuel tanks, there are many connections between them.
This can be a potential source of transposition errors for
model builders, as it is easy to accidentally wire up the actors
incorrectly.

While the finite dimension system could only distinguish
between fuel levels and flows generally, a full unit system
would allow a more exact analysis. In order to do so, we
first break the units down into their simplest components: a
fuel level is really a representation of volume, and a fuel flow
is really a rate of change of volume over time. We chose to
measure the tank capacities in liters, and the flows between
tanks in liters per second. Building these up from the basic
units of length and time gives the complete ontology shown
in Figure 11.

Like in the adaptive cruise control example, we will use con-
straints on how the basic operations of multiplication and
division affect our new units. As before, the dimensions will
transform according to our intuitive notion of how multipli-
cation and division affect dimensions, while the unit scaling
factors will be either multiplied or divided appropriately.

Here, however, we are only interested in derived dimensions.
The base dimensions of Time and Length are not important



Figure 10: Model of a two-tank aircraft fuel system.

Figure 11: A lattice for unit analysis of a fuel system.

in this particular model, as all of the signals in the model
measure either a Level, Flow, or are Dimensionless. The
Level dimension is actually a measure of volume, so we de-
rive this from the Length base dimension, and the Flow
dimension is a rate of change of the Level dimension over
the T ime dimension. The completed analysis is shown in
Figure 12, with the levels colored purple, the flows colored
green, and the dimensionless communications colored white.

4.3 Unit Conversions
While the most important step to preventing disasters that
result from inconsistent units is to find errors with inconsis-
tent units, there is also utility to correcting those errors to
transform erroneous models into correct ones. Because we
think that being aware of the units in use is important for
designers, we make the deliberate decision not to introduce
a feature for unsupervised automatic unit conversion in the
case of errors. Instead, we allow the model designer to ex-
plicitly add a UnitConverter actor to the model, as shown in
Figure 13. This allows conversion from one unit to another
within the same dimension, and the UnitConverter can take
care of the arithmetic for doing the conversion. It does this
by looking up the scaling factor and offsets for the units
being converted from the unit ontology. The functionality
that the actor then performs on receipt of an input value is
to first convert it into the representative unit type and then
from the representative unit into the output unit.

One caveat to note is that the UnitsConverter makes the
model behavior dependent on the ontology definition, which

Figure 12: The result of inferring units over the fuel
system model.

Figure 13: Using a UnitsConverter to convert from
mph to m/s.

is a unique property of this actor. We think that the bene-
fits and convenience of the UnitsConverter make this worth-
while, but model designers who want to preserve the sepa-
ration of analysis and behavior can create an equivalent of
the UnitsConverter actor by manually computing the con-
version between units and specifying the corresponding unit
constraints.

4.4 Domain specific unit systems
Thus far, all distinct units of measurement, such as those
corresponding to SI units, have all had distinct dimension
concepts in the ontologies. In some domain specific unit
systems, however, a user may want to allow a different set
of distinctions. In fact, much of the power of our unit sys-
tem stems from the fact that we allow distinction between
arbitrary concepts. This means users can model distinct
concepts from their domain even if they are traditionally
considered to have the same units.

Imagine, for example, that the car in our adaptive cruise

Figure 14: One way to model two semantically dis-
tinct temperatures separately.



Figure 15: Unit resolution over the RecordAssembler actor inferring a record of concepts.

Figure 16: The interface of the network model becomes much simpler with records.

control example had sensors for both oil temperature and
atmospheric temperature outside the car. Even though both
of these sensor readings may be temperature measured in de-
grees Celsius, they have a very different semantic meaning
in the model, and it may be important that these separate
semantic meanings are maintained by the unit system. In
our approach, a user can specify that these two temperatures
have different semantic meaning by simply creating separate
dimensions for them within the lattice. In Figure 14 we can
see how this would be accomplished. Since the least upper
bound of OilTemperature and AtmosphericTemperature
concepts in this case is Conflict, our default constraints
will show that units from these dimensions are incompati-
ble. Using this revised lattice, adding an oil temperature
reading to an atmospheric temperature reading would cause
a conflict, alerting the user to an error.

We see this type of user-specified semantic distinction as a
broadly useful feature. One can imagine aeronautical sys-
tems that must keep their notion of distance traveled sepa-
rate from their notion of altitude, or secure banking systems
that must keep the currency units belonging to one customer
separate from another. Even units that seem straightfor-
ward, such as a joule of work and a newton meter of torque
are dimensionally equivalent and must be explicitly distin-
guished in order to maintain their semantic distinction.

5. RECORDS OF CONCEPTS
Another weakness of the example presented in [8] was that
it was unable to use the structured data types of Ptolemy to
simplify the model. The reason for this is that by restricting
their ontologies to be finite, they are unable to express con-

cepts that may contain concepts inside of them. This means
they are unable to leverage useful abstraction mechanisms
like the Ptolemy II record types.

A record type is a datatype that provides a mapping from
strings, called keys into values of any type. In Ptolemy,
users can create records and break them down into their
component parts with the RecordAssembler and RecordDis-
assmbler actors, respectively. In our example, it would make
sense for the data that is sent over the network to be encap-
sulated into a record rather than modeling each field sepa-
rately. We can change our model to do so easily in Ptolemy,
but doing so exposes a shortcoming in our unit ontology.

Since the output of a RecordAssembler is composed of many
separate pieces of data, no one unit type would make sense.
It would be possible to add a separate concept specifically for
records, but this would make it impossible to get back to the
original units used when reversing the process at a Record-
Disassembler. What is really needed is a family of records
corresponding to all possible combinations of units. Since
records may potentially contain themselves (consider, for
example, one RecordAssembler whose output is connected
to the input of another), this is an instance of an infinite
recursive type pattern from Section 3.2.

Since the structure of records is quite common, we pro-
vide a general mechanism by which users can add records
to any ontologies, and RecordAssemblers and RecordDisas-
semblers have default constraints that construct and decon-
struct these records of concepts in the expected way. Figure
15 illustrates how several input signals that have different



dimensions and units are transformed by a RecordAssembler
actor into a record output signal that resolves to a record
concept output unit composed of the input units.

Due to the use of record concepts, the packets sent between
the vehicles of our adaptive cruise control model can be sim-
plified significantly. The Network simulator, for example,
can be simplified as shown in Figure 16. If we chose to
model the network differently, with a more abstract behav-
ior, for example, that occasionally dropped packets rather
than corrupting them, we could create a network model that
was oblivious to the structure of the packets which it car-
ried. This makes models more abstract and reusable, and is
an important workflow that we aim to support.

One of the dangers of infinite recursive patterns like those
used for record concepts is that they can create infinite
height lattices, which can in theory create situations where
inference may not terminate. We follow the design of the
Ptolemy II type system, which deals with similar problems
in supporting structured data types [17]. They deal with
this problem by placing limits in certain specific cases on
the depth of recursive nesting allowed. Since the run-time
semantics of Ptolemy are bound by these restrictions, it
makes sense that any static checks, like ours, should reflect
the same behavior. The main difference between the record
types of Ptolemy and the record concepts in our work is
that the type lattice of Ptolemy is fixed and known a priori,
allowing specialization for exactly the structured types that
Ptolemy supports. We aim for a more general approach that
supports records of concepts, but also allows user-created
extensions of other similar classes of infinite concepts.

6. CONCLUSION
Here we have presented a comprehensive system for allow-
ing ontology-based analysis of actor-oriented models. Unlike
previous work, our framework supports useful patterns of in-
finite ontologies, such as ontologies that contain values and
ontologies that contain themselves recursively. One impor-
tant class of analyses that we have concentrated on is unit
systems. Our framework allows user-specified unit systems
that include notions of base dimensions and derived dimen-
sions. It specifies reasonable default constraints that models
how these units are related, freeing the user from having to
specify individual constraints for many common operations.

In contrast to existing unit analysis approaches which con-
flate the meaning of all quantities using the same unit as
being of the same dimension, we allow users to specify di-
mensions arbitrarily. We see this as useful in cases where
there are different domain meanings that happen to be cap-
tured with measurements having the same units.

Finally, our infrastructure is general and does not prejudice
the specific ontologies or even the types of infinite ontologies
presented here. In addition to enabling users to create new
ontologies and analyses, we contend that new types of infi-
nite ontologies can and should be added to make analyses
more powerful and complete.
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